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I. Introduction

A previous paper (Mendelssohn [4]) shows how to reduce the
computational effort involved in solving "semi-separable' Markov
decision processes (MDP's). Semi-separable MDP's often arise as

discrete approximations to the problem of finding f(x) such that:

f(x) = max{G(x, y) + uE(E(s[y, D]j) :y e YX); x € X}
0<ac<1l (1

Problems of this form arise in the context of harvesting problems,
capital accumulation and consumption, reservoir management, and other
areas of stochastic optimization. The main characteristic is that the
transition probabilities depend only on the decision y, and not on the
state x. As such, semi-separable processes are an extension of the
"separable" MDP's discussed by Denardo [2], where it is further assumed
that G(x, y) = a(x) + b(y).

If it is assumed that Y(x) = {y:0 < y < x}, Mendelssohn [4]
shows that only two decisions can be optimal at any state x. Let A(x)
be an optimal policy function. Let Gi (x=0,1, ..., n3 y=0,1, ..., X),
be a discretization of G(x, y). Define b; as:

by =  max (Gi,-(f) 3=1,2, ..., n

0<i<j 31

% #*
and let ij be the argument where bj obtains its maximum. Then [4]:

*
A(x) = x or ix, x=0,1, ..., n. 2
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An interesting feature of (2) is that strong qualitative
properties of an optimal policy depend only on properties of the one-
period return function, and not on the transition probabilities. This
makes it possible to generalize results in specific contexts that have

not proven amenable to other forms of analysis.

II. Qualitative Results

A model of interest in capital accumulation, economic growth
and managing renewable resources (see Brock and Mirman [1], Mirman and
Zilcha [6], Mendelssohn and Sobel [5], and references cited in these
papers) assumes that:

(i) G6(x, y) = G(x-y); G(*) concave, nondecreasing and

continuous

(ii) s[*, D] concave and continuous.

Usually it is also assumed that s[+, D] is nondecreasing. It is then

shown that for a continuous state model:

Oidd—XA(x)gl (3)

or for a discrete state model:
A(x+l) = either A(x) or A(x) + 1. 4)

Theorem 2.1 generalizes these results by only requiring that G(*) be
concave, and no assumptions on s+, *]. The result is for the discrete

state space model.
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Theorem 2.1 In the discrete version of (1), assume

G(x, y) = G(x-y), G(+) concave and not separable. Then there exist

_i numbers:

-1 —-"2-="3 3
such that:
X 0 <x f_xl
= - < . 1
Ax) x-1 X, <x ﬁ-xi+l’ i odd
X x, < X 5_x.+1; 1 even

i=0,1, «eus

Proof. G(*) is assumed to be concave. This implies i; = j-1, so
that b; = b* = G(1) - G(0). The result is then straightforward.
O
If G(x-y) = p * (x-y), then i: could be any y < x. However,
the separable form of p * (x-y) provides a straightforward modification

to theorem 2.1.

Corollary 2.1 If under the conditions of theorem 2.1,

G(x-y) = p * (x-y), then there exist j integers:

0<x, <X, <%, < ... <X, <10

1 2 3 3
such that
X 0 <x <%
= ¥ X< Fn i odd
X X, <X < Xy4q i even
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In corollary 2.1, the X5 i odd, are the discrete equivalent

of local maxima of:

ocpE{f(s[y, D])} -pP°*y

and the Xt i even are the smallest points on the interval (Xi’ Xi+2)’

i odd, such that:

apE{f(s[xi+2, D])} -p .Xi+2] - [apE{f(s[xi, D])} - pxil >0

and

[apE{f(s[xi+l, D])} -p .xi+l] - [apE{f(s[xi, D])} - pxi] >0

III. Computational Results

For some problems, it is known a priori that if A(x) # x,
then A(x+1) # x+l. 1In the context of theorem 2.1, this is true if it
is assumed that s[*, D] is concave (Mendelssohn and Sobel [5]). It
may also be known, say from the two-period approximation to the infinite
horizon problem, that:

X for x < j

A(x) = u (5)
x-1 for x > j

The linear program that solves this problem is:



n
minimize T f (6)
x
x=0
5 3
- > i = * s @
s.t. xio(sxj OLPX>fX > G(0) i 0, 1, , n (6a)
n 5-1
Z (6}{, i-1 O{'PX >f > 61 j=0,1, ..., n (6b)
x=0
0 x # 3
where § =
> 1 X =i

From (5), it follows that equality must hold in (6a) for
0 < j < 3% and equality must hold in (6b) for j" < j < n. These

variables can be solved for in terms of £ L’ f L > f u ? so

i j+1 i -1

that the remaining LP can be greatly reduced in size. The new LP
can also be solved by iterative methods such as successive approxima-
tions with greatly reduced computational effort.

It should be noted, however, that even if jL, ju are not
known a priori, a sparse representation of (6) is possible. Transform

variables by:
i
f,.= ¥ v i=0,1, ..., n

and transform (6) into equality constraints by subtracting surplus

variables. This yields:



n
minimize I (ntl-x)v (7)
X
x=0
n n i 3
s.t. X <§ , - z P.)v. - A = G(0) j=0,1, ..., n (7a)
x=0 x<] i=x 73 J
J— J = — -
VJ+1 + Xj XJ+1 G(1) i 0,1, ..., n-1 (7b)
AT >0 §=0,1, ..., n
i 2
1 ja j_l
1 x <3
where 6x<' =
0 X > j

Besides being a much sparser LP, (7) has several other
advantages over (6). The expectation of a nonnegative random variable

x with distribution function F(x) can be expressed as:
n
E(x) = [ [1 - F(x)ldx
O

(Karlin and Taylor [3]), where P{x S_n} = 1., Note that the rows (7a)
are the discrete equivalent of:

n n

{ (sxij - a | sl3, &]dF(E))v(x)dx (8)

o X

After choosing a grid to discretize (1), there are several
ways of discretizing the transition probabilities. The LP (7)

suggests that for this problem an efficient method may be to set:

n . n
Seey T “iEXPJi = 8yp - @ J oLy, E1OFE) (9)
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As integration tends to '"smooth out" functions, (9) should give a
better approximation than by using (6) and letting
. x+1
Pl = [ sli, EIAF(E)
X

or some other approximation to the transition probabilities themselves.

III. Summary

In this paper, it has been assumed that x, y are scalars.
However, as pointed out in [4], similar results can be derived for
X, y vectors. Thus, related qualitative and computational results
can be derived for the vector case. As such, semi-separable MDP's
cover a broad class of problems that can be realistically computed.
LP's similar to (7) also lend themselves to row or column aggregation
such as in Zipkin [7], which can be used to obtain "good" policies

for quite large problems.
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