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ABSTRACT

A method of Kallio for improving bounds on the optimal value
of a linear program calculated from an intermediate iteration is used
to improve Zipkin's bounds for an aggregated linear program. The
method is also extended to obtain improved bounds for aggregated
Markov decision problems, including improved bounds by dominance.

Both theoretical and computational results are given, demonstrating

the improvement due to these new bounds.



I. Introduction

One method for solving large scale linear programs (LPs) or
large scale Markov Decision Processes (MDPs) is to aggregate the
original LP into a smaller LP, solve the smaller LP, disaggregate the
solution to the smaller LP back into the original tableau, and put
bounds on the difference between the true optimum and this approximate
optimum. Zipkin [5] has studied this problem extensively where the
columns or rows or both are aggregated and disaggregated either by
fixed weights, by "optimal" disaggregation, or else by dominance.

For each of these problems, Zipkin gives upper and lower bounds
for the value of a true optimum.

In related work, Kallio [2] derives bounds for a nonaggregated
LP which is stopped at some iteration of the simplex method, using the
primal and dual variables of the LP tableau at the stopped iteration.
Then Kallio shows how to use marginal analysis to tighten the original
bounds, using significantly less computation than would be required to
perform one further iteration of the simplex method.

For a nonaggregated LP, Kallio's theorem 1 and Zipkin's
proposition 2 are identical. Theorem 2.1 of this paper shows that
Kallio's method of tightening the bounds extends readily to an
aggregated LP, Theorem 3.1 demonstrates that Kallio's method also
extends to discounted, infinite horizon MDPs that are approximately
solved as aggregated LPs, and have error bounds developed by dominance,
as in [3]. The advantage of these later bounds over the bounds in

proposition 2 of [5] is that they require significantly less computation,
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though they produce a looser bound. The notation of this paper
follows that of [5] whenever possible. Only weighted column aggregated
problems are considered, as the extension to row and column aggregated

problems are straightforward.

II. The Model

The original LP is:

*
V4 = maxX CX

subject to Ax < b (2.1)

x>0

where ¢ = (cj) is an n-vector, b = (bi) is an m-vector, A = (aij) is an
mxn matrix, and x = (xj) is an n-vector of variables.

Let 0 = {Sk:k =1, ..., K} be an arbitrary partition of
{1, ..., n}, and lskl =n. DefineJ&F to be the submatrix of A con-
sisting of those columns whose indices are in Sk' Define ck and x

. . k .
similarly. Let g be a nonnegative n, -vector whose components sum

k

to unity, and define:

A =_Aygk , c, = c g k=1, ..., K

Let A = (Kl, ceey Kﬁ), c = (El’ ceey EK) and X a K-vector of variables.

Then the weighted column aggregate problem of (2.1) is:

Z = max EX
subject to AX <b (2.2)

X>0
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Zipkin [5] shows that for any partition o~ = {Sﬁzk =1, ..., K’}
of {1, ..., n} such that there exists known positive numbers {dl,
and known nonnegative numbers {pl, cens pK} with:
L o d.x < k=1 K (2.3)
je S; j Xj <Py =1, ..., .

then:

_ - K .
z<z <z+ I max{(cj—uAJ)/dj Py
= 'S’
k=1 |[j¢€ Kk
where u is the vector of optimal dual variables of (2.2).
Kallio assumes there exists two n-vectors, % and p,

0 < £ < u < ® guch that if the constraint
L<x<p

is added to (2.1), then the value of an optimal solution is unchanged.
Let z be the value of a current solution, let u be the present dual

vector, and define E, 3, and ﬂ by:

- - ot -
), -1, = min{0, c.}
(uJ) My i

=
I

Then Kallio shows:

- % - - -
z<z <ub + & -2 (2.4)



Furthermore, the dual problem:
min ub + &p - uf
subject touA + 8§ -y > ¢ (2.5)
§,u >0

restricted to {u|u = g + 6d, 6 €R} can be solved by solving:

min K + w6 + &p - uf

*
subject to h® + § -~y > ¢ (2.6)
S, u>0
K = gb, w=4db
*
h E(hj) = dA, ¢ = (c;) S c-gA

Kallio shows how the dual problem (2.6) can be solved by
marginal analysis, and yields a tighter bound than does (2.4). 1In
particular, convenient values of d and g are g = 0 and d = u. Then

*

h, = ¢, - E., and ¢, = c..
] J |

For the aggregated problem (2.2), suppose z is given, and
also known are the optimal dual variables u. Also assume (2.3), where
for convenience it is assumed that dj = 1 for all j. Consider the

restricted primal to (2.1):

maximize c¢x

<
s.t. AXx <b (2.7)
.2 < Xj < Py k=1, ..., K
JEoy
x, >0
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and the equivalent restricted dual:

K
minimize ub + & &, p
k=1 kk
(2.8)
> ; :
s.t. )iaijui+6k—cj JES5;3
j=1, ..., m
u>0
§ >0
Define c as before, but define § = {gk} by:
§. = max (c.)
jes,
*
By assumption (2.1) and (2.7) have the same optimal value z .
Lemma 2.1 (u, 6) is a feasible solution to (2.8).
+
* . . = — - > - .._
Proof. By definition 6k max <c. ?aijui> > <cj ?aljui>
j €Sk i i
for any js:sk. Then each constraint in (2.8) satisfies:
- < - -+
Za.,u,+6k32ai.ui+ c, ~Za, u  >c,
i 1] 1 i J J i J J
since if (¢, - La,,u,) is nonpositive, than La.,u, > c,, so the
; Hd U & T S
constraint is feasible. If (c, - )Za.ij Gi) is positive, then the
i

constraint is ey Z_cj, which again is feasible.
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Lemma 2.1 leads to the extension of Kallio's theorem 1 for

the aggregated LP. Consider (2.8) with u restricted to the set:
{u|u = 6u, 6eRr} (2.9)
The new restricted dual is:

minimize 26 + Zkak

k
s.t. (E aij ui>9 + (Sk > cj j ESk (2.10)
J= 1, » N
u>0
s >0 k=1, , K

Let z (0) be an optimal value of (2.10) for a given value of 6.
Then an optimal solution to (2.8) with the added constraint (2.9) can

be found by minimizing z (0) with respect to 6, as in [2].

Theorem 2.1. 2z (0) is a convex and piecewise linear function.

Let z_(8) be the left-hand derivative of z (6) with respect to 6. Then

the possible discontinuity points of z_(e) where an optimum can occur

are at 61, cees On where:
c./Zai.Gi Za,,ﬁi #0
_ /i ; 13
N -
oo Za,,u, =0, for all j.
ij i

i
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Proof. TFor a fixed value of 6, (2.10) is decomposable into the

following K subproblems:

minimize 6k Py

s.t. 63. > - e(Eaij ui> jes, (2.11)

The solution of (2.1D is readily obtained as:

- \\+
.max c, - 9( ?aij ui> Py (2.12)
jE Sk i

Possible points of discontinuity are at cj/Z aij Gi for all je Sk’ and
i

also at all values of 8 such that

c, - 6(2 ai.1—11> =\c, - B(Z airai)
J it 1
for j, r(—:Sk. However, unless all such constraints in (2.11) are

nonpositive, an optimum can only occur at the points c./(Z aij Gi).
i

Equation (2.12) is clearly convex and piecewise linear in €. Then:

z(8) =20+ I [max c. -(9 Za..u.) ]P
j . 1 i k
jes 1

k=1 Kk

which is convex and piecewise linear since it is the sum of such
functions. Similarly, its points of discontinuity at an optimum can

only be 91, vy en.
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%
Let z (6 ) be the minimum value of z (8), that is an optimal

solution to (2.8) subject to (2.9).
K~ .
Let ga = I max {c. - uAJ} Py
k=1ljes, J

which is the error term in Zipkin's bound.

*

- * -
Corollary 2.1 =z <z <z(6)<z+ Ea

Proof. =z (6*) < z + ga since z + ga is equivalent to z (1), and 6*
minimizes z (8*). By weak duality, a solution to (2.8) is greater

than or equal to a solution to (2.7). Since (2.9) restricts (2.8),
z (8*) is no less than an optimal value to (2.8), hence z (9*) is a

legitimate upper bound.
3
Following and extending Kallio, the following method of
marginal analysis yields an optimal value of 6. For any value of 6,
define J(6, k) as the j such that:

c. - BXa,, u, = max(c. - 06ra,, G.)
j6, k) 1 ij(6, k) i jeskJ ; 301

{3 3jedae, ¥), k=1, ..., K}.
- L p.fla,. G.)
jer(® i 97

s ) 3 u, >0} .
{JIJ eJ(0); ej < 0 and iaijlli < 0 or ej > 6 and iaij u; > }

and let J(8)

I
N

Then z_(0)

where I(0)
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The marginal analysis is as follows:

1) Choose any ei_e{el, cees Gn}

2) Evaluate z_(@i)

3) 1If z_(Gi) equals zero or changes sign at Gi, Gi is
optimal. Otherwise, if zf(@i) is negative, increase to
the next largest element in'{Gl, ey Gn}, and if z_(Gi)
is positive, decrease to the next smallest element in

{6 ., 8 1.
n

l’
* *
At 8 , the value of z (06 ) can also be evaluated as:
%) =26 + I 0La,.u (2.13)
z =z c. - a,.u,)p .
jeI(e)(J i 1 1) k

The summation in (2.13) contains at most K terms.

Example 1. This example is from Zipkin [5]. The original problem is:

*
zZ = max 2.5xl + 3x2 + 4x3 + 5x4
subject to 4xl + 5x2 + 7x3 + 10x4 < 54
X * 2x2 + x5 4+ 2x4 <10
Xy» xz, X35 %, >0
* * * % %
An optimal solution is Xy = 18/, Xy = 1, Xy =%, = 0, z =32.

Let K = 2, s, = {1, 23}, s, = {3, 4}, and the column weights in each
partition be (0.5, 0.5). Then z = 28% and u =<“/L,B, 25/48) . Zipkin

gives bounds for Py = 10, Py = 8:

*
28% < z < 3411,
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For finding the improved upper bound,

D
]

1.101 6, = 0.4290; 63 = 1.116 64 = 0.9231

61 = 1.101

<
[}

and the improved bound is:

5 *
28% < z < 32.1855

*
which is an extremely tight upper bound on the true optimal value z = 32.

Example 2. Again from [5], this is the same problem as example 1, but

the aggregation weights are changed to (0.75, 0.25). Then z = 30% and

a =(6 Tuo, 73/11,(,). Zipkin's bounds are
2 * 23
30% <z < 33k

For the improved bound:

[avg
I

1 1.051 92 = 0.8917; 93 = 1.0606 64 = 0.8794

<D
]

61 = 1.051

and the improved bound is:
2 *
307 <z < 32.1231

which again is an extremely tight upper bound.
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III. Application to MDP's

A discounted MDP defined on the integers X = {1, ..., n}
is controlled over an infinite planning horizon. For each state x¢ X,
feasible decisions Y(x) are available. If y€Y(x) is the decision
chosen, then an immediate reward G(x, y) is received, and a transition
is made to state j€X with probability Pij' The one-period rewards
are discounted by a factor o, 0 < o <1, and the object is to maximize
the total expected reward over an infinite horizonm. It is well
known that this problem can be solved by the following LP (d'Epenoux

(11):

n
maximize % G(x, y) w
x=1 X (3.1)

n
st. T 3 (6 - OLPy.)uy
x=1 ye¥Y(x) x]) %

I
=
.
f
=
-
.
A
=]

uyzo xeX
y € Y(x)

If it is assumed that G(x, y) is uniformly (finitely) bounded
from below, then the equalities in (3.1) can be transformed into
inequalities.

MDPs that arise from real problems can be so large that both
(3.1) and any of the bounds cited previously for an aggregated version
of (3.1) are computationally infeasible. 1In [3], bounds are developed
that are looser than Ea but require less computation. (Again, only
column aggregation is considered, as improved lower bounds can be
obtained similarly; see [4].) For each Sk’ let (x%, y)E:Sk denote that

the column associated with choosing action y from state x is in the

partition Sk' Define:



12

k
G (x, y) > max G(x, vy) k=1, ..., K
(%, y) €5,
k
ij > max PZ. for all jeX
(%, y) esk J

and for each k, let HkC:X be the set of x such that at least one
(x, y)E:Sk. Let £ be the optimal dual variables to an aggregated

*
version of (3.1), then define fk as:

£° = minimum £ k=1, ..., K

xE:Hk

Then the following bound on an aggregated LP can be derived [3]:
- * K k k = #\ 7T
z <z < L G (x, y) +aP . f. - £ P (3.2)
- xj ] k k
k=1
The advantage of (3.2) is that only K terms are evaluated,

that is only as many terms as are in the aggregated version of (3.1).

For each partition Sk’ k=1, ..., K define two terms:
h; > max {f - aZPy,_f.}
(x,y)eSk X xIJ
h, < min {fx - oz’ }

k
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to O to the value if the next smallest value of
+ - + -
{61, 61, ooy Gk, Gk}.

*
4) Evaluate v(8) at 0 .

Let 61 be an optimal © found by this procedure, and 62 an

optimal 0 found by the procedure of section 2.

- *
Theorem 3.1 z < z 5_2(62) f_v(el) < upper bound in (3.2).

Proof: From (2.11), the contribution of any partition Sk to z(9)
for fixed 6 is:
= -\ +
max (G(x, y) - 6(f - aZPy. f.» Py
X . X3 ]
ma; k y +
< max - 0(f -anp’ f
< <x,>o£:sk(c (o y) = O(F, - olp, j>) P
For 6 > 0:
K Nt 7k -\
max (G (x, y) - 8(F_ - azp? be i_(G (x, v) - ehk) (3.33)
X :x3 ]
(%, Y)E:Sk J
For 86 < 0 :
+ +
= = +
max (Gk(x, y) - 6(F - azp’, f,)) i(Gk(x, vy - ehk> (3.3b)
X 2 xj ]

Equation (3.3a) and (3.3b) imply that the contribution of
partition Sk to v(8) is greater than or equal to the contribution of

partition Sk to z(0). This implies at an optimum:

2(8%) < v(eh
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The rest of the theorem follows from theorem 2.1, and the fact that the

upper bound in (3.2) is exactly v(l).

Theorem 3.1 allows an improved bound to be calculated in much
less computation than is needed for one simplex iteration on a problem

with 2K columns.

Example 3. Mathews [6] gives the following equation for the return of

salmon in the Naknek river:

_ d
X = 6.727 "y, exp {-0.859 yt} (3.4)

where d is distributed as N(O, 0.1444). Equation (3.4) is discretized

on the set:

x = {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1.125
1.25, 1.375, 1.5, 1.625, 1.75, 1.875, 2, 2.5, 3, 3.5,

4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9}
where the units are 106 fish, and the decision set is:
Y(x) ={y:0 <y <x, x yveX}-

A forthcoming paper will discuss in greater detail the discretization
procedure and policy implications.

The one-period reward is (x - y), and the discount factor used
is a = 0.97. The true optimal value is z* = 1918.1672, by following a
base stock policy given by:

y = min{x, 0.75}
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The partitions, aggregating weights, and pk, P, and G are

given in Table 3.1. The bounds using Ea are:
*
624.2476 < z < 14,849.0491
The improved bounds using theorem 2.1 are:
*
624.2476 < z < 9,051.6241

*
which occurs at 6 =(-0.027). This comes from partition 2, from the

0.25
0.75°

The solution to the aggregated MDP gives a randomized policy

column associated with u

for all states, weighted between y = {0, 0.125, 0.25, 0.375, 0.5},
which is not a desirable solution. Three observations arise from these
results:
1) The improved upper bound gives a better idea of the true
optimal value.
2) The unimproved upper bound gives a better feel of how
"good" the present partitioning and aggregation is--that
is the larger spread is more indicative that implementing
the disaggregated "optimal" policy is probably undesirable.
3) The problem is highly deterministic. The root of
a%—{-(oc6.727yexp (-0.859y) - y) =0 for a=0.97 is 0.774.

Rounded down to the nearest grid point yields the proper

optimal policy.
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For this problem, the bounds by dominance are:

*
624.2476 < z < 347,663.366 (3.5)

which are not very good, though simple to calculate.

A simple improved bound by dominance can be found at 6 = 0,
though this is not the best improvement. In this case, the upper bound
is:

) [Gk(x, y)]+ Py

o N

k

which gives bounds of
%
624.2476 < z < 9,147.0000

This is a dramatic improvement over (3.5), and almost as good as the
best upper bound. For very large MDP's, bounds by dominance may be the
only ones available, and the improvement afforded by theorem 3.1 and

the tightness of the bounds are encouraging.
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