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ABSTRACT

An iterative aggregation procedure is described for solving large
scale, finite state, finite action Markov decision processes (MDP). At
each iteration, an aggregate master problem and a sequence of smaller
subproblems are solved. The weights used to form the aggregate master
problem are based on the estimates from the previous iteration. The
subproblems are each a finite state, finite action MDP with a reduced
state space and unequal row sums. Global convergence is proven for the
iterative aggregation process under very weak assumptions. The proof of
convergence relates this iterative aggregation technique to other iterative
techniques that have been suggested for solving nonaggregate linear

programs.



Most real life applications of Markov decision processes (MDPs) require the
ability to solve very large problems; this is particularly true if the state
is a vector of dimension greater than two or three. The major limitation
appears to be in-core storage. Computers can perform large numbers of
calculations in a relatively short time frame. However, a 7-dimension
state with only five grid points per dimension would have 78,125 states

and a transition matrix for each policy that could not be storedin-core in
present day computers. In this paper an iterative aggregation procedure

is described for solving large scale MDPs. The results are an extension of
the work by Zipkin [10, 11, 12] on fixed-weight row and column aggregation
and optimal disaggregation of linear programs. The procedure also improves
upon the results of an extensive Russian literature on iterative aggregation
processes [1, 4, 6, 7, 8].

The major result in this paper is that if the aggregation weights each
iteration are chosen properly, then an iterative procedure of aggregation
and optimal disaggregation converge to the optimal primal and dual solutions
of the MDP. Moreover, it is proven that the subproblems to calculate optimal
disaggregation have a special structure that reduces them to a sequence of
reduced state MDPs with unequal row sums (i.e., state dependent discount
factors). This allows the subproblems to be solved by more efficient
iterative techniques, rather than by linear programming. Finally, alternate
methods of performing the updates are presented. The algorithm does not
necessarily converge using these procedures. However, it is proven that if
the full algorithm is used every kth iteration, then the algorithm does

converge to an optimum.
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The major drawback of the iterative procedure to be described is that
the full algorithm requires the computational equivalent of one iteration
of successive approximation to update the dual variables. However, it is
believed that the value function should converge more quickly than simply
performing some version of successive approximations on the full problem.
By using one of the alternative dual updates for the majority of the

iterations, the computational burden should be reduced considerably.

2. THE MODEL

A Markov process is to be controlled over an infinite planning horizon.
At the start of each period, a state 1 from a finite set of N states is
observed, an action k 1s chosen from a finite set of K actions, and a
transistion is made to state j at the start of the next period with
probability p(i, j:k).

In each period, if state 1 1is observed and action k i1s selected,
a cost c¢(i, k) is incurred. The cost in period t 1s discounted by a
factor Bt;l, 0 <B <1, and it is desired to minimize the expected total
cost over the infinite planning horizon. It is assumed that c(i, k) is
bounded, or equivalently that 0 < c¢(i, k) < « for all i and k. It is well
known [3] that a solution to this MDP can be found by solving the following
linear programming problem (LP):

N

Maximize I +v(i)
i=1

]
ot

N
s.t. {8, - Br(4, j:ik)I(G) < e(d, k) i , N (2.1)
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where éij = .  Dual variables are denoted by u(i, k),
1 if 1 = j§
N;

i=1, ..., k=1, ..., K, and let v = {v(i)}, u = {u(i, k)}. Optimal

primal and dual variables are denoted by v={v@@)} and v = {vd, %)}.

In forming an aggregate problem, attention is restricted to a reasonable
subset of possible aggregations. At each iteration, it is assumed that the
same rows and columns are aggregated. Further, it only is possible to
aggregate actions within a (possibly aggregate) state or to completely
aggregate (possibly aggregate) states. In the former case only rows are
aggregated, while in the latter case rows and columns are aggregated.

More formally, let O be a partition of {1, 2, ..., N}, and let p be
a partition of {l, 2, ..., K}. Let {sn}, n=1, ..., N"i N be the set of
indices contained in the n™" partition of 0. Similarly, let {AR}’ L =1,

., K' <K be the set of indices contained in the Rth partition of p.
Thus, the MDP has been reduced to one with N' states and K' actions per
state.

th
Following [4], assume that at the t  iteration the estimates vt, ut

for v, u are given. Define the following doubly aggregated terms [11]:

5 I c(d, k) ut(i, k)
keA, 1ies (2.2a)
ct+l(n %) = £ n _ ,
’ L o, 0 mE L N
keAQ 1Esn =1, ..., K
. t,.
z (5ij - Bp(4, J:k)>v (1) (2.2b)
jes
AL+l . _ m N
p (i’ m'k) I Vt(j) i-= 1, es.y N3
j€sm m=1, ..., N';
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T P4, mik)ut(d, k) (2.2¢)
€ i€s
Cl ey . ek o n=1, ..., N';
P > I I utd, k) e -
’ » bl
kEAl iE:sn

It is easy to see that the objective function coefficients on the

aggregate variables will still be one using this aggregation scheme.

3. THE ALGORITHM AND ITS PROPERTIES
The iterative aggregation process to be described i1s similar to the
ones in [4, 6, 7, 8] when it is realized that the quadratic objective
functions suggested are exactly those terms that would arise from using
an exterior penalty method to solve a linear programming problem. Each

master problem is a doubly aggregated LP as in [11], and each subproblem

is a solution of an optimal disaggregation subproblem [12, Chapter 7].

. t t .
Assume that after iteration t, v and u are given.

-

Step- (1) Form the aggregate coefficients defined in (2.2)

Step (ii) Solve the master program:

N'
Maximize I z(n)
n=1
N t+1 t+1 n=1 N' (3.1
s.t. I p (n, m:2) < ¢ (n, L) >t )
m=1 =1, ..., K'
z(n) >0 n=1, ..., N'

(The additional constraints z(n) > 0 is justified since it is assumed
t+1 t+1
c(i, k) > 0.) Denote a primal solution to (3.1) by z = {z  "(n)}, and

-+ t+1
the dual solution by At L {\ (n, 2)}.



Step (iii) Solve N' MDPs

Each MDP has as its state space the states indexed in Sy its action

space is the original action space; the one-period cost of action k from
-+ A

state 1 is zt 1(n)pt(i, n:k). And the transition probabilities are the

same as in the original MDP. Denote the updated values by vt+l = {vt+l(n)}.

Let ﬂn(i, k) be the dual variables for each of the N' MDPs, where the

subscript n denotes that 1 1is an index in S,

Step (iv) Update the dual variables

t,. t+1 N
W, = @ @) o )48 E (e, jroviTRG) - v
b} z u (i, k) j=l
keA, ies
') n

(3.2)

where {a}+ = max (a, 0).

A fixed point of the iterative process, if one exists, is denoted by

* . *
v, u*. The corresponding values of z, A are denoted by z, A*.

An alternative to step (iii) that reduces the computational effort is

to use the fixed-weight disaggregate value [10, 11}:

vt(i)zt+l
I vt(3)
j€s

n

(n) tes (3.3)

vt+1(i) -
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Similarly, step (iv) can be replaced by a fixed-weight disaggregate:

t t+l
+
W, = 2 RA @, By e (3.4)
z Z ut(i’ k)
keA ies
) n
. t+l . .
or, by noting that the m (i, k) in step (iii) are disjoint, let
W, k) = Tr:;+l(i, K) . (3.5)

Before proving properties of the iterative aggregation scheme, it is
necessary to prove that step (11i) is equivalent to optimal disaggregation

as in [12, Chapter 7].

Lemma 3.1 Ia the LP:

Maximize I v(i)

iesn
s.t. z <6.. - Bp(i, j:k)>V(j) < ztﬂ(n)ﬁt(i, n;k)  ies (3.6a)
. ij n
jes,
k=1, ..., K
L (-—Bp(i, j:k))V(j) < ztﬂ(n)ﬁt(i, n:k) i¢s  (3.6b)
jes
n

k=1, ..., K

v(i) >0 iesn (3.6¢)

at an optimal solution, none of the constraints (3.6b) are binding, i.e.,

t+1 _ .
™ (i, k) = 0 for 1tsn.
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Proof. Let w be the cardinality of S,* Then there can be at most w
constraints at equality at an optimal solution to (3.6). Suppose one of the
rows in (3.6b) is at equality at an optimal solution. This implies there
exist some state j' such that no action has been found optimal for it, i.e.,
ﬂ§+1(j', k) = 0 for k =1, ..., K. This implies in the dual problem to (3.6)

that for the dual row associated with j'Esn

N K

IE - BpW, 0T, 1) =1 (3.7)
1=1 k=1
i#3!
. at . t+1
However, p(i, j':k) > 0 for all j, k, and ﬂn (1, k) > 0. The only solution
satisfy (3.7) is the trivial one W§+l = 0.

O

The importance of lemma 3.1 is that the objective Maximize I  v(i)
i€s
n

subject to (3.6a) is itself an LP for solving an MDP. Hence more efficient
iterative techniques rather than linear programming can be used to find the
optimal disaggregate values.

The existence of an optimal solution to (2.1) has been well-established.
The existence of a fixed point (v*, u*) for the iterative process will be

x %
proven by showing that (v , u ) is a fixed point if and only if it is optimal

in (2.1).

* %
Theorem 3.1 (v, u) is a fixed point of the iterative process

described in steps (i)-(iv) if and only if it is primal and dual optimal for

(2.1).

Proof. (v, u) is a fixed point
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The proof proceeds by showing that if vt = v, ot = u, then

L) = 5 3@, and AT, ) = = § (i, k). These values
iESn iesn kEAR

are optimal in the master problem if they are feasible and if they satisfy

complementarity conditions. The latter is

N -—
53 s, . - ) —VED) g G, k)
Z nzl(iES V(i))jgs( 13 Pp(t, ] k» I v(i) elt, B~ z u(i, k)
n n ies ies keAQ

(2 T udd, k))=0
ies keA
n 2

After cancelling out terms, this reduces to:

N K N

5T (V) - (c(i, K) + 8 % p(d, j:k)> G(i, k) = 0
i=1 k=1 j=1

the complementarity condition for (2.1), which is true by assumption. Since

v, u are primal and dual feasible, positive weighted sums of the rows and

columns cannot change this. Hence zt+l(n) = ¢ v(i) and Xt+l(n, L) =
ies
n
z £ u(i, k) are primal and dual feasible in the master problem.
Esn keAl

Using the LP form of step (iii) given in (3.6), it is evident that
vt+1 = v. Since v is feasible and optimal, the second term on the right-hand
side of (3.2) is élways nonpositive. The first term reduces to u(i, k).

I1f u(i, k) is zero, then the brackets imply Gt+l(i, k) =0 =u(i, k). If

u(i, k) > 0, then



N
c(i, k) + B I p(di, j:k)Vv(j) - v(i) = 0, so again u
j=1

e, w0 = ad, k).

* %
(v , u) is optimal in (2.1)

, , t * ot * t+1
The proof is to show that if v = v , u = u , then z (n) = I v(@)
iEsn
-+ - * *
and A® l(n, 2 = I Z u(i, k). Suppose not. Since v , u is a fixed

iESn keA2
*
point, then from (3.12), v* is feasible in (2.1), or else ut+l # u . However,

v* is optimal in step (iii), or equivalently in the N' LPs (3.6). This
implies v* is feasible in (2.1) and optimal, contradicting the assumption
that v* # v. Since v* =v, if u* # G, then it is straightforward to show
that the master problem and (3.2) assure that u* and v satisfy the
complementarity conditions for (2.1). Hence u* must be u.
O

That (v, u) is a fixed point is suggested in [10, 11]. There it is
shown that optimal weightings should be proportional to optimal solutions.
The main Fesult of this paper is that under very weak conditions the

iterative process described in steps (i)-(iv) coverges to an optimum

solution of (2.1). The algorithm in steps (i)-(iv) can be seen to be a

X X
RN K RN % RN K.

it int to t map A: RN X
composite poin se P PR, n 4 +

Theorem 3.2 Assume for (VO, uo)_z 0 that v', u' are nonnegative and

t tyy®
bounded when one iteration of the procedure is performed. Let {(v", u )}t=l

be the sequence of vectors generated by the algorithm. Then either {vt, ut)}

as the limit of the subsequence.
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Proof. (i) If the algorithm converges, it converges to a fixed point

Denote the assumed limit by (v', u'). Since the sequence {(vt, ut)}
*

converges on a metric space, there exists a metric d and a ¢t such that

t t
d((v , u ), (v', u')) < e, for every € > 0. Also, for every € > 0 there

- _ _ £ £! e" £

exists a t such that for t' > ¢, t" > ¢, d ((v ,u ), (v, u )> < g,
Combining inequalities says that d((vt, ut), (vt+l, ut+li> + 0 as t
approaches infinity, hence (v', u') must be a fixed point.

(ii). The point to set map A is upper-semicontinuous (closed)

Since the partitions being used are the same each iteration, there exists
three constant matrices Tl<(N'K')><1)>, T2(l><N'), and T3(NK><N) such that

the constraints for the master problem in step (i) can be written

(TP ) < (rtue

As the mapping is linear and continuous, and the constraint forms a convex
set, the mapping Al is closed. Zangwill [9] proves.that the maximization
operator }s closed, call this A2. Similarly, the constraints for the
subproblems form closed maps, call then A3s AA, e AN'+2, and equation
(3.2) is trivially closed, call this map AO. Therefore the map A can be
written as A = AOAZAN'+2... A2A3A2Al. The assumption that(vl, ul) is
finite guarantees that the algorithm produces a sequence of bounded vectors,
that is A is defined on a compact set. Closedness of A then follows from
corollary 4.2.1 iﬁ [9, p. 96].

(1ii) The penalty function

N . N R /[N . 14\ 2
Ivi@) -= I % LZ (cs..—Bp(i, $10)vE) - e, K
=1 © i=1 k=1\Lg=2""

i

monotonically decreases with t for some fixed value e > 0.
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Remark. This result relates iterative aggregation for MDPs to the
iterative algorithm for nonaggregated linear programs proposed in [5].
Both are developed around the penalty function method for solving LPs.
Bertsekas [2] has shown that there exists for linear programs an
exact penalty function method such that for all e in the interval
(0, e], the penalty function algorithm converges. Let e be one such value.
Using (3.2), the Lagrangean function for the master problem (3.1) at
iteration t+1 can be written as
N!

Maximize I z(n)
z>0 n=1

N' K' N . +
_[:Z T w(n, l{] I I (ft(i, k) + I <6ij - B8p(4, j:k))v (3) - c(i, k)
n=1% =1 ke ies j=1
n
N' £
e I (5 - 8p(s, ji0) e, 0 (3.8)
n=1 jes J L vt
jesn
N +
ut(i, k) + % <dij - Bp(4, j:ki)vt(j) - c(i, k) is used in (3.8) because
j=1

the total normalizing constant can be cancelled out on both sides of each

constraint of the aggregate problem (3.1).

At w(n, ) E-%, and at the trial value z(n) = % Vt(i), (3.8) reduces to:
i€s
N t 1 N'X t N ! t +
vt -2t rdror (vt 0o+ D (6. - 8, j:k))v () - (i, K
i=1 ®n=1 2=1 keA, ies j=1\ H
n
N t
( X <6ij - Bp(i, j:k))v (3) - ¢e(di, k) (3.9)
j=1
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- t N t
Let I be the set of (i, k) such that {u (i, k) + I <Gij-8p(i,j:k)>v &D)

3=1
- c(d, k)) < 0. Then (3.9) can be written as:

(855~ 8o, 3:0)vE () - e(a, k))}
1

no~

N N' K!
Pty -2 1 o: { 5 I ut(i,k)<
i= J

1 € n=1 %=1|keA, ies
2 n

[ e I~

. 2
(Gij - Bp(4d, j:k)>vt(j) - c(d, k))
1

1
® (1, Kertlj

N
+'% X __ut(i, k)( X <6i' - Bp(d, j:k))vt(j) - c(4, ka (3.10)
(1, k)€l j=1\
t-1 t-1

Since ut(i,k)= Xt(n,z) u (i:f) ; vt(i) = zt(n)——!——i%;——

I o, k) T vt

LeA, ics i€s
R n n

and zt, Kt are optimal in (3.1) at iteration t, the second term in (3.10)
is identically zero. Moreover, the last term in (3.10) is nonpositive
since (i, k)eI' if vt is feasible in that row. Hence, (3.10) is less than

or equal to:

™M=

\ 2
N K N +
¥ ovi) - X b [ b <6.. - Bp(i, j:k))vt(j) - o4, k)\ J . (3.11)
= © =1 k=1 L\3=1\ " /

i=1
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Moreover, zt, A% maximizes the penalty function (3.11) given the constraints
in (3.1) at iteration t. Writing the Lagrangean as L(z, w), this implies

*
1 , maxL(z,w) occurs at z(n) = I vt(i). Let L (w) =maxL(z, w).

that for w = —
e z
i€s z
n

t+l kt+l

*
Then at an optimum to (3.1) at iteration t+l, L(z , ) <L (w). From

(3.11), this implies the penalty function is decreasing with ¢t.

(iv) Convergence

Parts (i)-(iii) of the proof, combined with theorem 3.1, are the
conditions required in Convergence Theorem A[9, p. 91].

0O

When steps (i1)-(iv) of the iterative aggregation process are used only
every kth iteration, and the alternatives (3.3), (3.4), or (3.5) are used
at all other iterations, proofs of convergence follow closely the proof of
theorem 3.2 to derive the conditions necessary for Zangwill's other con-
vergence theorems. Intuitively, one full step of successive approximations
still is computed infinitely often if the algorithm does not find a fixed
point. As long as the intermediate steps do not force the value function v
and the dual variables u in undesirable directions, the algorithm converges
since successive approximations converges when applied to MDPs.

Finally, it is conjectured that convergence can be proven in an
analogous mammer to theorem 3.2 if only some subset of the dual variables
are adjusted by eéuation (3.2) at each iteration. (This is in the spirit
of recent advances in LP algorithms that converge in polynomial time.)

For example, one partition at a time could be updated each iteration using

equation (3.2).
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4, CONCLUSION

An iterative aggregation procedure for MDPs has been presented which
converges globally to an optimal value function and to optimal dual variables.
The process requires less in-core storage at any point then does solving the
full MDP. However, each iteration requires at least the computational
equivalent of one iteration of successive approximations. Convergence
should be more rapid using the iterative aggregation process.

To reduce the computational burden, several alternative procedures are
presented at key steps. Convergence has not been proven when these procedures
are used; however, if the full iterative aggregation process 1s used every
kth iteration, then again the algorithm converges globally.

There should exist a more efficient computational method for updating
at each iteration, the dual variables, a method which converges globally.
Improvements in this area should lead to truly efficient means for solving

large scale MDPs.
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